
Specifying and Managing
Role-Based Access Control within a

Corporate Intranet

David Ferraiolo and John Barkley
National Institute of Standards and

Technology
Gaithersburg, Maryland 20899

Abstract
In order for intranets to reach their full potential, access

control and authorization management mechanisms must be
in place that can regulate user access to information in a
manner that is consistent with the current set of laws,
regulations, and practices that face businesses today. The
purpose of RBAC on the Web would be to provide this
access control service, thereby enabling the use of the Web
for new and more sophisticated applications -- to allow
access to information and other resources that would
otherwise not be possible given the existing lack of
operational assurance. This paper describes an approach at
providing these assurances through the use of RBAC for
networked Web servers.

1 Introduction
One of the greatest obstacles in the growth of intranets as

a means of enterprise computing is the inability to
effectively manage authorization data. Today, authorization
management is costly and prone to error. Web Server
administrators usually control user access to enterprise
published documents through the creation and maintenance
of ACLs on a server-by-server basis.

ACLs specify, for each protected resource, a list of
named individuals, or groups composed of individual users,
with their respective modes of access to that object. When
users are required to self-administer access rights to the
objects they “own,” ACLs have many advantages. At any
given time it is easy to answer the question -- Who and,
under what mode of access, has access to this object? Here
users are provided with the capability of granting other
users access to objects, and revoking existing accesses on a
“need-to-know” basis.

1.1 The Existing Problem

This use of ACLs is problematic for a variety of reasons.
In many enterprises within industry and civilian
government, end users do not “own” the information for
which they are allowed access [1][3]. For these
organizations, the corporation or agency is the actual
“owner” of system objects and discretion on the part of the
users may not be appropriate. Although, enforcing a need-
to-know policy is important where classified information is
of concern, there exists a general need to support subject-
based security policies, such as, access based on
competency, the enforcement of conflict-of-interest rules,
or permitting access based on a strict concept of least
privilege. To support such policies assumes the ability to
restrict access based on a user function or role within the
enterprise. Here the relevant question is: “What are the
current access rights for this user”? Performing such a
review is difficult when authorization data is organized in
an ACL structure. ACLs further complicate matters when a
user takes on new responsibilities or changes roles within
the enterprise. To reflect these changes would entail a
through review and selective deletion of all the user’s
existing privileges on all servers. Without the ability to
perform a per-user review an enterprise runs the risk of
maintaining residual and inappropriate user access rights.

From an authorization management perspective, each
Web server is treated as stand-alone device. Their
underlying access control mechanisms are locally and
individually administrated with little or no regard to the
authorization data maintained on the other servers within
the network. To attempt to administer enterprise wide
subject-based policies, using ACLs alone, would require
intense coordination across administrative boundaries,
would be prone to error, and result in a low degree of
confidence that the required control policies would be
faithfully and consistently enforced.

Because of the inherent risk associated with this lack of
operational security assurance, organizations have resisted
publishing sensitive information on their Web servers,
thereby limiting their utility, and depriving the organization
of potential productivity gains.

1.2 Solution: Role-Based Access Control

To solve these and other operational assurance problems,
NIST has initiated an effort to implement Role-Based
Access Control (RBAC) for the WWW (RBAC/Web).
RBAC is a technology that is attracting increasing attention,
because of its potential for reducing the complexity and cost
of authorization management in large systems
[3][4][5][12]. RBAC provides administrators with a context
for the specification and enforcement of complex security

policies, that are often impractical or even impossible to
enforce through the direct administration of lower level
access control mechanisms, such as ACLs.

For Web server applications, RBAC/Web provides these
administrative conveniences by composing the seemingly
unrelated and incomprehensible authorization data of the
lower level access control mechanisms, and other RBAC
relevant data, into a single RBAC authorization database. In
doing so, RBAC/Web organizes this authorization data and
presents it to the intranet administrator(s) in a relational
format and at a level of abstraction that is natural to the way
enterprises are normally structured and conduct business.
From an administrators perspective, RBAC/Web serves as a
visualization and maintenance tool of the enterprises
intranet access control mechanisms in terms of it’s users,
roles, role hierarchies, operational constraints, and
privileges.

The remainder of this paper describes NIST’s approach
to RBAC/Web. Section 2, provides an overview of RBAC/
Web including its constituent process components and
services. Section 3, provides a detailed description of
RBAC and its supporting security policies. Section 4,
describes the RBAC/Web distributed authorization
database, and the static security policies that it supports.
The RBAC/Web Authorization database is distributed
among some of the RBAC/Web network components
described in section 2. Section 5, Role Activation, provides
a description of the operation of RBAC/Web and its
dependency on the RBAC Authorization database in
supporting dynamic security policies through the creation
of an Active Role Set (i.e., the introduction of a role or set
of roles into a users active session). Section 6, Scenario of
Use, provides a comprehensive scenario of use, from a
client request for URL access (at the browser), through user
authorization and activation, to the result provided by the
Web server.

2 RBAC/Web Overview
RBAC for the World Wide Web (RBAC/Web) is an

implementation of RBAC for use by World Wide Web
(WEB) servers. Because RBAC/Web places no
requirements on a browser, any browser that can be used
with a particular Web server can be used with that server
enhanced with RBAC/Web. RBAC/Web is implemented for
both UNIX (e.g., Netscape, NCSA, CERN, or Apache
servers) and Windows NT (e.g., Internet Information
Server, Website, or Purveyor) environments.

Components of RBAC/Web are shown in Table 1.
RBAC/Web for UNIX uses all of the components in Table
1. Because built-in NT security mechanisms are closely
compatible with RBAC, the NT version uses only the

Database, Session Manager, and Admin Tool components.
RBAC/Web for NT requires no modification of Web server
internals or access to source code. With RBAC/Web for
UNIX, there are two ways to use RBAC/Web with a UNIX
Web server.

The simplest way is by means of the RBAC/Web CGI.
The RBAC/Web CGI can be used with any existing UNIX
server without modifying its source code. RBAC URLs are
passed through the Web server and processed by the RBAC/

Web CGI. RBAC/Web configuration files map URLs to file
names, while providing access control based on the user’s
roles. Installation of the RBAC/Web CGI is similar to the

Table 1: RBAC/Web Components

Data-
base

Files that specify the relationship
between users and roles, the role
hierarchy, the constraints on user/role
relationships, current active roles, and
relationship between roles and privi-
leges.

Data-
base

Server

Hosts the authoritative copies of the
files which define relationships
between users and roles, the role
hierarchy, and the constraints on user/
role relationships. These files are cre-
ated and maintained by the Admin
Tool.

API
Library

A specification which may be used by
Web servers and CGIs to access the
RBAC/Web Database. The API is the
means by which RBAC may be added
to any Web server implementation.
The API Library is a C and Perl library
which implements the RBAC/Web
API.

CGI Implements RBAC as a CGI for use
with any currently existing Web server
without having to modify the server.
The RBAC/Web CGI uses the RBAC/
Web API.

Session
Manager

Manages the RBAC Session. The
RBAC/Web Session Manager cre-
ates and removes a user’s current
active role set.

Admin.
Tool

Allows server administrators to cre-
ate users, roles, and permitted opera-
tions; associate users with roles and
roles with permitted operations; spec-
ify constraints on user/role relation-
ships; and maintain the RBAC
Database. Administrators access the
RBAC/Web Admin Tool by means of a
Web browser.

installation of the Web server.

While RBAC/Web CGI is relatively simple to install
anduse, it is not as efficient as performing access control
directly in the Web server. The other way to use RBAC/Web
is to modify the UNIX Web server to call the RBAC/Web
API to determine RBAC access. A URL is configured as an
RBAC controlled URL by means of the Web server
configuration files that map URLs to file names.

Some Web servers for a UNIX environment, such as
Netscape and Apache, divide their operation into steps and
provide the capability for each step to be enhanced or
replaced by means of a configuration parameter. This
allows Web server operation to be modified without having
to change the server’s source code. For these Web servers,
the RBAC/Web API can be integrated by simply providing
the appropriate calling sequence and modifying
configuration parameters.

RBAC is an access control mechanism that can be used
in conjunction with existing WWW authentication and
confidentiality services. These include username/password,
Secure Socket Library (SSL), Secure HTTP (SHTTP), and
Private Communication Technology Protocol (PCT). User
identification information is passed to RBAC/Web by the
Web server. It is the responsibility of the Web server to
authenticate user identification information and provide
confidential data transmission as configured by the Web
server administrator.

A description of RBAC, the RBAC Authorization
Database, and some RBAC/Web supported policies are
describe below.

3 Administration
While RBAC can be treated as either a discretionary or

non-discretionary access control method, the treatment
given in this paper is the latter. That is, one or more
administration roles are required that are distinct from user
roles, insofar as their permissions deal solely with the
policy attribute elements of the model: User-to-Role and
Role-to-Permission mappings, containment relations,
cardinality constraints, and separation of duty constraints.
Users not assigned to administration roles are denied these
permissions and must operate within the confines of the
roles defined for them and assigned to them by an
administrator. Conversely, users assigned to administration
roles are restricted to administration of policy attribute
elements when active in those roles.

Division of roles in this manner supports the principle of
Attenuation of Privileges which states that subjects should
not be able to increase their privilege or grant to other
subjects privileges they themselves do not own. Separation

of authorization aspects from the policy-attribute
management is useful in practice since authorization must
be relatively independent of how policy attributes, such as
roles, are managed [5][8][9]. However, a circular
dependency between authorization and policy attribute
management exists in such models, since authorization
requires defined policy attributes for controlling access, and
specification of policy attributes requires control of access
to that information [9].

Under RBAC, users are granted membership into roles
based on their competencies and responsibilities. User
membership into roles can be revoked easily and new
memberships established as job assignments dictate,
without having to deal with the complexity of the
underlying access control mechanisms. With RBAC, users
are not granted permission to perform operations on an
individual basis, as is the case with conventional access
control methods, but instead privileges are associated with
roles and users are granted membership into those roles.
Role association with new privileges can be established as
well as old privileges deleted as organizational functions
change and evolve. Roles can be hierarchical. For example,
some roles in a hospital may be healthcare provider, intern,
and doctor. The doctor role may include all privileges
available to the intern role, which in turn includes all the
privileges available to the health care provider role.

RBAC is administered through the use of roles and role
hierarchies that mirror an enterprise’s job positions and
organizational structure. Users are assigned membership
into roles in a manner that is consistent with a user’s duties,
competency and responsibility. Constraints are imposed on
user membership into roles and on a user’s ability to
activate a role to address conflict of interest issues.
Complexities that are introduced by simultaneously
supporting mutually exclusive roles and role hierarchies are
handled by the RBAC software, making security
administration easier. It is the roles, role hierarchies, and
constraints that provide the context by which the intranet
administrators can specify, and RBAC/Web servers can
enforce, the specifics of a large variety of laws, regulations
and business practices that can pertain to an organization.

RBAC has been shown to support several well-known
security principles and policies that are important to
commercial and government enterprises that process
unclassified but sensitive information [1][12]. These
include: the specification of competency to perform
specific tasks; the enforcement of Least Privilege for
administrators and general users; and the specification, as
well as the enforcement, of conflicts of interest rules, which
may entail duty assignment and dynamic and static
separation of duties. For RBAC/Web these policies can be
enforced at the time that users are authorized as members of

a role, at the time of role activation (e.g., when a role is
established as part of a user’s active session), or at the time
the user attempts to access a URL.

In addition to RBAC’s commercial relevance, RBAC has
the potential to support policies that are essential within
classified environments. Such policies can include one-
directional information flow and provide the same effects as
the well accepted Simple Security property and the Star-
property1[6] of the Bell and Lapadula security model[11].

4 RBAC/Web Database
The RBAC/Web Database includes roles, and role

hierarchies; relational association of users with roles and
roles with permitted operations on objects; and relational
constraints on role membership, role activation, and object
access.

Within the RBAC/Web Database, a user is a person that
is represented by a unique identifier, a role is a collection of
job functions, and a privilege represents a particular method
of access to a set of one or more protected RBAC objects.
When authorizing user membership into a role, the user is
implicitly provided with the potential to exercise the
privileges that are associated with the role. Privileges in
RBAC/Web are the HTTP methods that the end-user can
perform on RBAC controlled URLs.

Roles can have overlapping responsibilities and
privileges, that is, users belonging to different roles may
need to perform common operations. Furthermore, within
many organizations there are a number of general privileges
that pertain to all employees. As such, it would prove
inefficient and administratively cumbersome to specify
repeatedly these general privileges for each role that gets
created. To improve administrative efficiency and support
the natural structure of an enterprise, RBAC and therefore
RBAC/Web includes the concept of role hierarchies. A role
hierarchy defines roles that have unique attributes and that
may “contain” other roles, that is, one role may implicitly
include the set of privileges that are associated with another
role. Role hierarchies are a natural way of organizing roles
to reflect authority and responsibility, and competency.

1. The Simple Security Property states that a sub-
ject (i.e., a process executing on a user’s behalf)
must not be allowed to read from storage reposito-
ries that are at a higher sensitivity level than the
subject’s current sensitivity level. The Star Prop-
erty states that a subject must not be allowed to
write to storage repositories that are at a lower sen-
sitivity level than the subject’s maximum sensitiv-
ity level allowed for reading.

Role hierarchies within the RBAC/Web authorization
database are represented as ancestor relationships. The
immediate parent relationship can be represented as an
ordered pair ((Ri+1,Ri), >), where Ri+1 is the immediate
parent and Ri the child and “>” is a transitive relation
“contains,” which induces a hierarchical structure on the
role set. Thus, Ri+1 > Ri implies Ri+1 contains Rj.

Role hierarchies are an ideal structure for ensuring
adherence to the principle of Least Privilege which applies
to administrators as well as general users. The principle of
Least Privilege requires that a user be given no more
privileges than necessary to perform his/her job function.
Ensuring least privilege requires identifying the users’s job
functions, determining the minimum set of privileges
required to perform that function, and restricting the user to
a domain with those privileges and nothing more. In non-
RBAC implementations, where privileges are organized on
a per user or per object basis, least privilege is often difficult
or costly to achieve and maintain.

From a policy perspective, the capability within RBAC/
Web to administratively impose constraints on user
membership into roles provides a powerful means of
enforcing conflict of interest and cardinality rules for roles
as they uniquely apply to an enterprise. For example, to
address conflict of interest issues, RBAC/Web can enforce
a rule of static separation of duty (SSD) when defined
within the authorization database. This means that a user
may be authorized as a member of a role only if that role is
not mutually exclusive with any of the other roles for which
the user already possesses membership. For example, a user
that is authorized as a member of the role Derivative Trader
may not be allowed to be a member of the role Derivative
Settler for the same securities group. Another type of
constraint imposed on the RBAC/Web authorization
database is the cardinality of a role. Some roles in a
organization may only be occupied by a certain number of
employees at any give time. For example consider the role
of a department head. Although over time a number of
individuals may assume this role, only one individual may
assume the responsibilities of the department head at a
given point in time. Cardinality constraints could also be
used as a means of enforcing licencing agreements.

In general, constraints provide confidence as to the
adherence of enterprise wide policies. In theory, similar
effects can be achieved through the establishment of
procedures and the sedulous actions of administrators. For
example, administrators can maintain and share a list of role
pairs that are known to be mutually exclusive and ensure
that an individual user never gains membership to both role.
However, the reality is that procedures break down and
administrators get reassigned over time. The constraints
imposed by RBAC/Web provide management and

regulators with the confidence that critical security policies
are uniformly and consistently enforced within the network,
and as such, contributes to the networks operational
assurance.

To further promote operational assurance, RBAC/Web
provides security administrators with a complete and
consistent view of the entire RBAC Database. This is
important because of the manner in which authorization
data is distributed among the RBAC/Web servers. The
RBAC/Web Database include data elements that pertain to
the ACLs that reside with each Web server where RBAC/
Web is installed. An ACL is organized as a list of roles,
where for each role, there is a list of HTTP methods under
which a user acting in the role is permitted to access an
associated URL. The collection of ACLs are organized and
managed as the collection of the role-privilege relationships
within the RBAC/Web Database. The user-role
relationships, role-role relationships, and constraint
relationships (for user membership and role activation) are
maintained on the RBAC/Web database Server.

5 RBAC/Web Role Activation
In the context of RBAC/Web, each subject represents a

user active in one or possibly many roles. As shown in
Figure 3, a subject represents an active user process with the
single and double arrow denoting a one-to-many
relationship. A user establishes a session during which the
user is associated with a subset of the roles for which the
user has membership (i.e., the user’s ARS). A user’s
authorization (which is a consequence of role membership)
is a necessary but not always sufficient condition for a user
to be permitted to execute a privilege. Other organizational
policy considerations or constraints may need to be taken
into consideration that pertain to authorizing users to
execute privileges.

Figure 1. User and subjects

RBAC/Web requires a user to first be authorized as
active in a role before a user is permitted to perform an
operation or access a URL. This provides the context for
other policy checks to be imposed. As such, RBAC/Web
provides administrators with the capability to enforce an
organization-specific policy of Dynamic Separation of
Duty (DSD). DSD places constraints on the simultaneous
activation of roles. For example, an individual user may be
authorized for both the roles of Cashier and Cashier
Supervisor, where the supervisor is allowed to acknowledge
corrections to a Cashier’s open cash drawer. If the

User Subjects

individual acting in the Role Cashier attempted to switch to
the role Cashier Supervisor, RBAC/Web would require the
user to drop his or her Cashier role, and thereby forcing the
closer of the cash drawer before assuming the role Cashier
Supervisor. As long as one individual is not allowed to
assume both of these roles at the same time a conflict of
interest situation will not arise. Although the same effect
could be achieved through the establishment of an SSD
relationship, DSD relationships generally provide the
enterprise with greater operational flexibility.

6 Scenario of Use
From the users perspective, the end-user interaction with

a WWW server enhanced with RBAC/Web is similar to
requesting URLs whose access is not controlled by RBAC/
Web. However, before access to a URL controlled by
RBAC is permitted, end-users must establish an RBAC
session. In establishing the RBAC session, end-users
choose and/or are assigned a current active role set (ARS).
The ARS determines the HTTP methods that the end-user
can perform on RBAC controlled URLs. The ARS remains
in effect until the end-user establishes a new ARS. It is the
ARS which constitutes the RBAC session. An end-user has
only one RBAC session at any given time.

A user may be assigned roles which have DSD
relationships. If this is the case, the Session Manager
enables users to choose the subset of their assigned role set
that they would like to use in the session. Users are
presented with a list of subsets which do not violate any
DSD relationships and asked to choose. In order to
minimize the number of choices, the subsets in the list,
taken from the set of all possible subsets of a user’s assigned
roles, contains the largest subsets which do not violate any
DSD relationships. Once the choice is made, the RBAC
session is established with an ARS consisting of all
assigned roles in the chosen subset and all roles which the
assigned roles inherit. If there are no DSD relationships
among the roles assigned to a user, then the RBAC session
is automatically established with all authorized roles in the
ARS.

7 Conclusion
Although intranets can offer great benefits to a company

or government agency, security problems remain. For
intranets to reach their full potential as a means for
enterprise computing, access control mechanisms must be
in place that can conveniently, and cost effectively regulate
user access to information, while providing management
with a confidence that their critical policies are faithfully
and consistently enforced across administrative boundaries.
To solve these and other authorization problems, NIST has

initiated an effort to provide and promote the use of Role-
Based Access Control (RBAC) for the WWW (RBAC/
Web). RBAC is particularly attractive for intranet
applications because of its ability to reduce the complexity
and cost of authorization management. In addition, RBAC
provides a context for the specification and enforcement of
complex security policies that are often impractical or even
impossible to enforce through the direct use of conventional
access control mechanisms. Under RBAC, intranet
administrators are provided with a single view of the RBAC
authorization database which is at a level of abstraction that
is intuitive and consistent with the way the enterprise is
structured and conducts business. RBAC/Web thereby
bridges the huge gap between the enterprise’s laws,
regulations, and business practices and the details of the
underlying access control mechanisms of the Web servers.

References
[1] David F. Ferraiolo, Dennis M. Gilbert, Nickilyn Lynch, “An

Examination of Federal and Commercial Access
Control Policy Needs,” Proceedings of the 16th NIST-
NSA National Computer Security Conference,
Baltimore, MD, 20-23 September 1993.

[2] Imtiaz Mohammed and David M. Ditts, “Design for
Dynamic User Role-Based Security,” Computers and
Security, 1994.

[3] David F. Ferraiolo and Richard Kuhn, “Role-Based Access
Control,” Proceedings of the 15th NIST-NSA National
Computer Security Conference, Baltimore, MD, 13-16
October 1992.

[4] David F. Ferraiolo, Janet A. Cugini, D. Richard Kuhn, “Role-
Based Access Control: Features and Motivations,”
Proceedings 11th Annual Computer Security
Applications Conference, New Orleans, LA, December
1995.

[5] R. Sandu, E.J. Coyne, H.L. Feinstein, and C.E. Youman,
“Role Based Access Control Models,” IEEE Computer,
29(2), February 1996.

[6] Department of Defense, Trusted Computer Security
Evaluation Criteria, DoD 5200.28-STD, 1985.

[7] National Computer Security Center, A Guide to
Understanding Discretionary Access Control in Trusted
Systems, NCSC-TG-003, September 1987.

[8] Hal L. Feinstein, et al., Final Report: Small Business
Innovation Research (SBIR): Role-Based Access
Control: Phase 1, McLean, VA, SETA Corporation,
January 20, 1995.

[9] Virgil Gligor, RBAC Security Policy Model, Preliminary
Draft Report, R23 Research and Development
Department of the National Security Agency, April
1995.

[10] Virgil Gligor, J. Huskamp, S. Welke, C. Linn, and W. T.
Mayfield, Traditional Capability-Based Systems: An
Analysis of Their Ability to Meet the Trusted Computer
Security Evaluation Criteria, IDA Paper P-1935,
October 1986.

[11] D. E. Bell and L. J. LaPadula, Secure Computer Systems:
Mathematical Foundations, Technical Report. ESD-

TR-73-278, Volume 1, The MITRE Corporation,
Bedford, MA, March 1973.

[12] S. H. von Solms and Isak VanderMerve, “The Management
of Computer Security Profiles Using a Role-Oriented
Approach,” Computers and Security, 1994.

